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Abstract-This paper gives a theoretical solution of a turbulent boundary layer problem of dissoci- 
ating gas on a flat plate. A half-empirical Prandtl-KBrmkn turbulent theory is used to solve this 

problem. 

Rt5sm&Cet article donne une solution thkorique du problkme de la couche limite turbulente sur une 
plaque plane dans un koulement de gaz d&so&. Une thhorie semi-empirique de Prandtl-Kevin sui 

la turbulence a CtB utiliske pour rkoudre ce problkme. 

Zusammenfassung-Es wird eine theoretische LGsung der turbulenten Grenzschicht eines dissoziieren- 
den Gases an der ebenen Platte mitgeteilt. Heirzu wird eine halbempirische Theorie nach Prandtl und 

und KBrmBn herangezogen. 

Abstract-B cTaTbe 5f3jIaraeTc2i TeopeTEsectFoe pememie 3azasn 0 TypGynenTEow norpalfrrs- 
HOM CJIOe ~~CCO~~~~py~n~erO Fa3a Ha IIJIOCKO% nJIaCTHKe. J&m pemewMff aTot 3aAarrr 

np~3~eKaeTC~ uO~~3Mn~p~qeCKaK TeOpEWi T~p6~~eHTHOCT~~ ~paU~T~~-~ap~aHa. 

THE writing of this paper developed from certain 
studies on turbulent boundary layer on a 
strongly cooled flat plate flowed by the non- 
gradient dissociating gas with assumed existence 
of thermodynamic equilibrium. The problem is 
determined by: 

(1) Prandtl numbers of laminar sublayer and 
in turbulent region of layer are equal to 
unity. 

(2) Diffusion Prandtl numbers of laminar the equations of state for the perfect dissociating 

sublayer and turbulent region of a layer gas can be written in the form (2) 

are also equal to unity. 
(3) The wall temperature over a plate is 

P=pRT(l+a) (4) 

uniform and constant. where R = gR,; as numbers Pr = 1, Prp = 1, 

(4) A perfect purified two-atomic gas is being then the equations of energy and motion will 

discussed. have the same form. All this allows us to consider 
both velocity profiles and total enthalpies as 

Boundary layer equations at the above- similar 
mentioned conditions can be written in the 
following forms : 

Choosing the condition of identity for the 
equations of energy and motion we shall have 

1 

the ratio : 
- 

H-Hw u 
x&T = ii, (51 

I au 
-PO @ (11 the ratio (5) makes it possible to establish the 
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dependence between velocities fields, densities, 
atom concentrations fields which are the results 
of dissociation and temperature fields. 

Referring to Lighthill [2], we write the value 
of total enthalpy in the form: 

a=T(4+a)+a+& (6) 
d 

where I&+=; 
d d 

At the presence of thermodynamic equilibrium 
the rate of dissociation can be determined 
according to formula (2): 

a2 1 1 
I--a=rexp -F 

i 1 
(7) 

Using equations (4) to (7) we get the formulae 
describing the dependence between the para- 
meters of flow at any point of the boundary 
layer : 

Velocity profile at the turbulent region of 
boundary layer can be defined by the approxi- 
mate method. 

When in equation (1) (the left-hand side of the 
equation) the forces of inertia of the average 
flow are neglected in comparison with the 
forces of “apparent” viscosity and using the 
scheme of Prandtl turbulent mixing then we 
shall get the following expression [l] : 

where J2 = pw~20t and 1 = XJ~ 

From (11) and using (10) we shall get the 
following formula for velocities profile : 

ln7 = A4 
s 

‘Pdp?i([--R:~2+t%+ 1 - 
1 

-.m/m [1 - 304 +.m>1> (12) 

where 

or briefly: 

cc =f(97) @a) 

The form of the functionf(g) is determined by 
the parameters of the external flow and by the 
conditions on the wall 

T=R, 4; 
[ 

U2f&+1_fo l 1 R, 4+.M 

(9) 
P .- 

PU 
= Co/(&s- R; q2 + ,e + I- 

- fTPY~uJ1 u + f(Y)]/{4 +_&)>) (10) 

Here we have: 

In every actual case the form of f(cp) can be 
defined from (8), and, then it is possible to 
integrate the left-hand side of (12) in this way or 
other. 

The expression [l - 3/{4 + f(q) }] may be 
taking into account for the slightest changes of the 
rates of dissociation as a constant value equal to 
Q, and for ,f(~) we take the following approxi- 
mating formula : 

where 

f(91> = + VP 

+ =f (P) 

In this case we shall have the following formula 
for the profile of velocities 

(13) 

t We can find the values of integration constant P at 
conversion of velocities profile, with P-+P~,,~~~. into 
Prandtl logarithmic profile. 
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where 

UO si= -$ypxj - Iv zopd; 

N =PwTws-Qq~ 
w 7TT 

If we neglect the forces of inertia then the 
equation of motion at the region of laminar 
sublayer is transformed to the form 

a7 
-=o 

S 
(14) 

where s ‘3 = w:E 

=M &U- w + 89: + 1 -.fbp)/&l 
1 

[l - 3/c4 -!-..f(F))I) (19) 

The integration (14) of y = 0 to y wili give where 

(15) 

The value of p entering the equation (14) is the 
function of state parameters which generally 
speaking are changing through the thickness of 
the sublayer. 

However, the determination of the values of p 
in equation (15) we should produce in such a way 
that we might compensate the neglect of inertia 
forces from the point of establis~ng the velocities 
profile in sublayer. Let us make the most simple 
assumption 

p = pFLc = const. 

In this case we have a linear profile of velocities 

where 

The region where we shall have a profile (16), 
i.e. the thickness of the laminar subtayer, we 
shall define by the second empirical coefficient of 
the turbulent theory, i.e. by K&-man number, 
referring the physical parameters to the wall 
temperature : 

(17) 

where w = 11.5 and V, = 4(7,/p,). 
The formulae (17) and (16) give the possibility 

to determine the value of velocity on the external 
boundary of the Iaminar sublayer 

UZ 
- =.; 

UO 

We get the law of resistance using the formulae 
(18) and (12): 

The value of S,jS may be calculated sub- 
stituting into (20) the expression for velocity 
profile (12) and the expression for densities 
profile (lo).: 

Thus the formula (12) presents a relation 
between the coefficients of friction E and 
number Rea,, = GJ+,/Y~ Taking into account 
this dependence it is possible to integrate the 
equation of motion written in the integral f’orm 
and receive the distribution of friction co- 
efficients along the plate: 

t It is quite possible to make an assumption which is 
anologous to that we had in the reference fl]. However, 
it does not bring the essential accuacy. 

: The use of velocity profile as (13) gives more simple 
expression for the law of resistance. 
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The counting of heat flows may be made on the 
basis of the existence of similarity of the profiles 
of velocities and enthalpies. 

CONCLUSION 

The above-mentioned method of calculation 
makes it possible to determine both friction and 
heat exchange in the flow of dissociating gas 
moving at high velocities. 

X 
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u 

24’ 
V 

V' 

P 

P’ = 
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6, = 

6 
a. = 

NOMENCLATURE 

distance along plate (m); 
distance from plate (m); 
gas velocity component, 
directed along plate (m/set); 
velocity pulsation 2.4; 
gas velocity component, 
directed along axis y (m/set); 
velocity pulsation u (m/set); 
gas density (kg sec2/m4) ; 
gas density pulsation (kg sec2 
m-4); 
boundary layer thickness (m), 
laminar sublayer thickness 
(m); 
impulse loss thickness (m); 
dissociation rate; 

H 

; 
T 

&I - 

P 

Td 

Pd zz? 

pr= !f = 

ppf = .‘c = 

g 

Indices 

0” 
- 

total enthalpy; 
friction stress (kg/m2); 
length of mixture path (m) ; 
thermodynamical tempera- 
ture (OK); 
gas constant consisting of 
molecule A, (kg m/kg “C); 
pressure (kg/m”) ; 
characteristic temperature 
(OK); 
characteristic pressure 
(kg/ m2) ; 
Prandtl criterion of laminar 
sublayer ; 

Prandtl criterion of boundary 
layer turbulent section; 
gravity acceleration (m/set”); 

flow parameters on wall; 
flow parameters on external 
boundary of layer. 
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